Depth Two Hopf Subalgebras of Semisimple Hopf Algebras

نویسنده

  • SEBASTIAN BURCIU
چکیده

Let H be a finite dimensional semisimple Hopf algebra over an algebraically closed field of characteristic zero. In this note we give a short proof of the fact that a Hopf subalgebra of H is a depth two subalgebra if and only if it is normal Hopf subalgebra.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semisimple Hopf Algebras and Their Depth Two Hopf Subalgebras

We prove that a depth two Hopf subalgebra K of a semisimple Hopf algebra H is normal (where the ground field k is algebraically closed of characteristic zero). This means on the one hand that a Hopf subalgebra is normal when inducing (then restricting) modules several times as opposed to one time creates no new simple constituents. This point of view was taken in the paper [13] which establishe...

متن کامل

Coset Decomposition for Semisimple Hopf Algebras

The notion of double coset for semisimple finite dimensional Hopf algebras is introduced. This is done by considering an equivalence relation on the set of irreducible characters of the dual Hopf algebra. As an application formulae for the restriction of the irreducible characters to normal Hopf subalgebras are given.

متن کامل

Normal Hopf Subalgebras of Semisimple Hopf Algebras

In this note the notion of kernel of a representation of a semisimple Hopf algebra is introduced. Similar properties to the kernel of a group representation are proved in some special cases. In particular, every normal Hopf subalgebra of a semisimple Hopf algebra H is the kernel of a representation of H

متن کامل

Character Theory for Semisimple Hopf Algebras

We study the induction and restriction functor from a Hopf subalgebra of a semisimple Hopf algebra. The image of the induction functor is described when the Hopf subalgebra is normal. In this situation, at the level of characters this image is isomorphic to the image of the restriction functor. A criterion for subcoalgebras to be invariant under the adjoint action is given generalizing Masuoka’...

متن کامل

Commutator Hopf Subalgebras and Irreducible Representations

S. Montgomery and S. Witherspoon proved that upper and lower semisolvable, semisimple, finite dimensional Hopf algebras are of Frobenius type when their dimensions are not divisible by the characteristic of the base field. In this note we show that a finite dimensional, semisimple, lower solvable Hopf algebra is always of Frobenius type, in arbitrary characteristic.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008